
On the toric ideals of matroids of fixed rank

Michał Lasoń

University of Bern & Polish Academy of Sciences

Nice, 14th June 2017



what is a matroid?

A structure that abstracts the idea of independence.
Matroid M on a ground set E can be introduced in several ways:

independent sets
bases – axiom:

exchange property:
for B,B ′ and b′ ∈ B ′ \ B there is b ∈ B \ B ′ such that
(B \ b) ∪ b′ is a basis

as a consequence it satisfies also:
symmetric exchange property
multiple symmetric exchange property

rank function
... and by many other ways (circuits, flats, hyperplanes)
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examples

representable matroid: E – a finite subset of a vector space

independent sets – linearly independent subsets of E
bases – bases of E in the vector space

graphic matroid: E – the set of edges in a given graph G
independent sets – subsets of E that do not contain a cycle
bases – spanning trees of G
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toric ideal of a matroid

M a matroid on E with the set of bases B, K a field.

ϕM : SM = K[yB : B ∈ B] 3 yB →
∏
e∈B

xe ∈ K[xe : e ∈ E ]

Toric ideal of M, is the kernel IM : = kerϕM .

For e ∈ B1 \ B2 there exists f ∈ B2 \ B1 such that

B ′
1 = (B1 \ e) ∪ f and B ′

2 = (B2 \ f ) ∪ e

are bases. Then clearly yB1yB2 − yB′1yB′2 ∈ IM .
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White’s conjectures

Conjecture (White ’80)
For every matroid M, its toric ideal IM is generated by quadratic
binomials corresponding to symmetric exchanges.

Conjecture (White ’80, weak version)
For every matroid M, its toric ideal IM is generated by quadratic
binomials.

Question (Herzog, Hibi ’02)
Is the base ring SM/IM Koszul?
Does the toric ideal IM of a matroid M possess a quadratic Gröbner
basis?
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results for special classes

’02 Herzog, Hibi equivalent for discrete polymatroids

’07 Conca weak version for transversal polymatroids
’08 Blasiak graphic matroids
’10 Kashiwabara matroids of rank 6 3
’11 Schweig lattice path matroids
’13 Bonin sparse paving matroids
’14 L., Michałek strongly base orderable matroids
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general results

Theorem (L., Michałek ’14)
White’s conjecture is true ‘up to saturation’.

JM = (yB1yB2 − yB′1yB′2 corresponding to symmetric exchange)
m = (yB B is a basis) so called ‘irrelevant ideal’
conjecture: JM = IM

result: saturation of JM with respect to m equals to IM

conjecture: affine schemes Spec(SM/IM) = Spec(SM/JM)

result: projective schemes Proj(SM/IM) = Proj(SM/JM)

result: for every matroid M there exists a constant c(M), such that
ideals JM , IM agree starting from degree c(M)
c(M) = deg(IM)r(M)|B|



general results

Theorem (L., Michałek ’14)
White’s conjecture is true ‘up to saturation’.

JM = (yB1yB2 − yB′1yB′2 corresponding to symmetric exchange)

m = (yB B is a basis) so called ‘irrelevant ideal’
conjecture: JM = IM

result: saturation of JM with respect to m equals to IM

conjecture: affine schemes Spec(SM/IM) = Spec(SM/JM)

result: projective schemes Proj(SM/IM) = Proj(SM/JM)

result: for every matroid M there exists a constant c(M), such that
ideals JM , IM agree starting from degree c(M)
c(M) = deg(IM)r(M)|B|



general results

Theorem (L., Michałek ’14)
White’s conjecture is true ‘up to saturation’.

JM = (yB1yB2 − yB′1yB′2 corresponding to symmetric exchange)
m = (yB B is a basis) so called ‘irrelevant ideal’

conjecture: JM = IM

result: saturation of JM with respect to m equals to IM

conjecture: affine schemes Spec(SM/IM) = Spec(SM/JM)

result: projective schemes Proj(SM/IM) = Proj(SM/JM)

result: for every matroid M there exists a constant c(M), such that
ideals JM , IM agree starting from degree c(M)
c(M) = deg(IM)r(M)|B|



general results

Theorem (L., Michałek ’14)
White’s conjecture is true ‘up to saturation’.

JM = (yB1yB2 − yB′1yB′2 corresponding to symmetric exchange)
m = (yB B is a basis) so called ‘irrelevant ideal’
conjecture: JM = IM

result: saturation of JM with respect to m equals to IM

conjecture: affine schemes Spec(SM/IM) = Spec(SM/JM)

result: projective schemes Proj(SM/IM) = Proj(SM/JM)

result: for every matroid M there exists a constant c(M), such that
ideals JM , IM agree starting from degree c(M)
c(M) = deg(IM)r(M)|B|



general results

Theorem (L., Michałek ’14)
White’s conjecture is true ‘up to saturation’.

JM = (yB1yB2 − yB′1yB′2 corresponding to symmetric exchange)
m = (yB B is a basis) so called ‘irrelevant ideal’
conjecture: JM = IM

result: saturation of JM with respect to m equals to IM

conjecture: affine schemes Spec(SM/IM) = Spec(SM/JM)

result: projective schemes Proj(SM/IM) = Proj(SM/JM)

result: for every matroid M there exists a constant c(M), such that
ideals JM , IM agree starting from degree c(M)
c(M) = deg(IM)r(M)|B|



general results

Theorem (L., Michałek ’14)
White’s conjecture is true ‘up to saturation’.

JM = (yB1yB2 − yB′1yB′2 corresponding to symmetric exchange)
m = (yB B is a basis) so called ‘irrelevant ideal’
conjecture: JM = IM

result: saturation of JM with respect to m equals to IM

conjecture: affine schemes Spec(SM/IM) = Spec(SM/JM)

result: projective schemes Proj(SM/IM) = Proj(SM/JM)

result: for every matroid M there exists a constant c(M), such that
ideals JM , IM agree starting from degree c(M)
c(M) = deg(IM)r(M)|B|



general results

Theorem (L., Michałek ’14)
White’s conjecture is true ‘up to saturation’.

JM = (yB1yB2 − yB′1yB′2 corresponding to symmetric exchange)
m = (yB B is a basis) so called ‘irrelevant ideal’
conjecture: JM = IM

result: saturation of JM with respect to m equals to IM

conjecture: affine schemes Spec(SM/IM) = Spec(SM/JM)

result: projective schemes Proj(SM/IM) = Proj(SM/JM)

result: for every matroid M there exists a constant c(M), such that
ideals JM , IM agree starting from degree c(M)
c(M) = deg(IM)r(M)|B|



general results

Theorem (L., Michałek ’14)
White’s conjecture is true ‘up to saturation’.

JM = (yB1yB2 − yB′1yB′2 corresponding to symmetric exchange)
m = (yB B is a basis) so called ‘irrelevant ideal’
conjecture: JM = IM

result: saturation of JM with respect to m equals to IM

conjecture: affine schemes Spec(SM/IM) = Spec(SM/JM)

result: projective schemes Proj(SM/IM) = Proj(SM/JM)

result: for every matroid M there exists a constant c(M), such that
ideals JM , IM agree starting from degree c(M)

c(M) = deg(IM)r(M)|B|



general results

Theorem (L., Michałek ’14)
White’s conjecture is true ‘up to saturation’.

JM = (yB1yB2 − yB′1yB′2 corresponding to symmetric exchange)
m = (yB B is a basis) so called ‘irrelevant ideal’
conjecture: JM = IM

result: saturation of JM with respect to m equals to IM

conjecture: affine schemes Spec(SM/IM) = Spec(SM/JM)

result: projective schemes Proj(SM/IM) = Proj(SM/JM)

result: for every matroid M there exists a constant c(M), such that
ideals JM , IM agree starting from degree c(M)
c(M) = deg(IM)r(M)|B|



general results, continued

Theorem (L. ’16)
White’s conjecture is true ‘for high degrees’ w.r.t. the rank.

for every rank r there exists a constant c(r), such that if M is a
matroid of rank r , then JM , IM agree starting from degree c(r)

Theorem (L. ’17+)
If M is a matroid of rank r , then its toric ideal IM has a Gröbner
basis of degree at most 2(r + 3)!.

Corollary
Checking if White’s conjecture is true for matroids of a fixed rank is
decidable.
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sketchy proof sketch

M a matroid of fixed rank r

1) yB1 . . . yBn − yB′1 . . . yB′n ∈ IM

2) prove that IM is generated in degree at most (r + 3)!
3) yD1 . . . yDn−(r+3)!(yB1 . . . yB(r+3)! − yB′1 . . . yB′(r+3)!

) ∈ IM

4) we want to use ‘up to saturation’ result
5) use Ramsey-type result for blow-ups of bases
6) use ‘up to saturation’ result
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equivalent reformulations

Conjecture (a)
Complementary basis graph of a k-matroid is connected.

Conjecture (b)
Let k > 2, and let M be a matroid of rank r on the ground set E
of size kr + 1. Suppose x , y ∈ E are two elements such that both
sets E \ x and E \ y can be partitioned into k pairwise disjoint
bases. Then there exist partitions which share a common basis.

Proposition
Conjectures (a) and (b) ⇒ White’s conjecture ⇒ Conjecture (a).
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